Поиск в словарях
Искать во всех

Физический энциклопедический словарь - диаграмма направленности.

 

Диаграмма направленности.

диаграмма направленности.
Важная функция А. состоит в формировании излучения с определ. хар-ками, гл. обр. с заданной диаграммой направленности — угл. распределением амплитуды поля излучения. Кроме амплитудной диаграммы, часто используют диаграмму направленности по мощности — угл. распределение плотности потока энергии излучения А. в дальней зоне. Обе эти диаграммы направленности у сложных А. имеют лепестковую структуру, обусловленную интерференцией волн, излучаемых и рассеиваемых разл. элементами А. Если синфазно складываются

Рис. 6. Слева — диаграмма направленности; справа — ее сечение.


поля всех элементов, то соответствующий им максимум наз. главным. Диаграмму направленности изображают в виде объёмной, рельефной картины, контурной карты с линиями равных уровней либо с помощью отд. плоских сечений, чаще двух ортогональных сечений, проходящих через направление гл. максимума и векторы Е и Н (рис. 6).

Т. к. осн. часть мощности, излучаемой или принимаемой А., локализуется в гл. лепестке, направленность

25



излучения А. характеризуют шириной гл. лепестка на уровне половинной мощности 0,5 или нулевом уровне: 020,5. Величина t0,5 определяет угловое разрешение А. и может быть приближённо оценена по ф-ле (в радианах): 0,5/D, D размер А. в данном сечении диаграммы направленности. Это соотношение совпадает с Рэлея критерием, используемым в оптике для оценки разрешающей способности оптич. систем. В т. н. сверхнаправленных А. это ограничение преодолевают за счёт создания резко осциллирующего фазового распределения (неустойчивого к малейшим флуктуациям).

При уменьшении D/ диаграмма направленности А. расширяется, однако даже у предельно малой А. диаграмма не явл. полностью изотропной. Напр., диаграмма направленности электрич. и магн. диполей имеет вид тороида, ось к-рого совпадает с осью диполя (рис. 7). Различают диаграммы направленности: игольчатые (остронаправленные в двух гл. плоскостях); веерные (остронаправленные в одной гл. плоскости); спец. формы в одной или двух гл. плоскостях, напр. типа cosec ( — угол места) или П-образная (с максимально крутыми скатами гл. лепестка и подавленными боковыми лепестками); слабонаправленные (с 0,5 порядка неск. десятков градусов в гл. плоскостях); «всенаправленные» в одной плоскости в виде тела вращения вокруг оси, перпендикулярной направлению гл. максимума .


Рис. 7. Диаграммы направленности электрич. и магн. диполей.


Подбором излучателей (дипольных и мультипольных) можно создать А. с любой диаграммой направленности, однако обычно предпочитают находить оптим. компромисс между точностью воспроизведения диаграммы и простотой изготовления и регулировки А., её стоимостью, кпд и т. п. Выбор излучателей, а следовательно, и конструкции А. существенно зависит от диапазона длин волн.

Рис. 8. Схема ДВ передающей антенны: 1 — горизонт. часть; 2 — снижение; 3 — изоляторы; 4 — мачты с оттяжками; 5 — передатчик; 6 — заземление.


Так, на коротких, средних и длинных радиоволнах (~1075 м и ~2•102—2•104 м) в ряде случаев естественным и технологичным оказывается использование А., близких к электрич. диполям-вибраторам с l (рис. 8, 9) или к их сочетаниям в виде т. н. антенных полей и решёток с размерами l>>.

Рис. 9. Схема антенны — мачты Айзенберга.


При этом приходится учитывать, что зоны индукции в этом случае могут простираться на многие км, а на хар-ки излучения А. существ. влияние оказывают ионосфера и Земля (см. Распространение радиоволн).

Структура поля системы излучателей зависит от их взаимного расположения, общей конфигурации системы, фазовых и амплитудных соотношений между токами в излучателях, наличия и расположения неизлучающих (пассивных) элементов и т. д. Однако общим явл. то обстоятельство, что на расстоянии от А., равном неск.  (в волн. зоне), быстро спадающие поля индукции становятся несущественными, а поле излучения определяется суперпозицией полей, возбуждаемых излучателями.

Рассмотрим для простоты А., питаемые синфазно. На расстоянии неск.  от поверхности синфазной фазированной антенной решётки (рис. 10)


формируется синфазное распределение поля на поверхности диаметром D>>. Эта поверхность наз. излучающим раскрывом или апертурой А. Аналогичная картина имеет место и для А. так называемого оптич. типа, в к-рых элем. вибратор с l<< (или его аналог в виде щели, рупора, открытого конца волновода и т. п.) помещается в фокус линзы (линзовая антенна) или отражателя (зеркальная антенна), к-рые формируют практически синфазные поля на своём раскрыве: плоской поверхности, ограниченной, напр., кромкой зеркала (рис. 11).

Дальнейшая эволюция, к-рую претерпевает поле «волн. пучка», создаваемого широким синфазным раскрывом, условно показана на рис. 12 в предположении достаточной угл. «узости» диаграммы направленности (угл. спектр плоских волн, на к-рые можно разложить поле излучения, характеризуется волн. векторами k, мало отклоняющимися от направления, перпендикулярного раскрыву). На близких расстояниях (практически в пределах <rD2/n, n>10 —20 — целое число) синфазность фронта ещё не нарушается, и волна ведёт себя почти как плоская.

Рис. 11. Схема однозеркальной параболич. антенны.


Это — зона геометрической оптики или т. н. прожекторного луча, в к-ром сосредоточена практически вся мощность, излучаемая А. (для оптич. прожектора почти вся атмосфера находится в области геом. оптики, т. к. =5 •10-5 см, D50 см, D2/20=25 км).

Затем в интервале расстояний гrD2/n (10>n>1) происходит существ. нарушение синфазности, сопровождаемое осцилляциями амплитуд поля, в т. ч. в направлении распространения. Это — зона дифракции Френеля (см. Дифракция волн, Дифракция света). И наконец, при r>>D2/ (условно принято при r>2D2/) волн. фронт становится сферическим, поле убывает как 1/r, и осцилляции амплитуд в направлении распространения практически исчезают. Это — дальняя зона А., где уже можно оперировать с понятием диаграммы направленности (зависимости амплитуды поля только от угл. координат).



Другие характеристики антенны.

Кроме диаграмм направленности по амплитуде и мощности, часто пользуются поляризационными и фазовыми диаграммами направленности. Поляризац. диаграмма — зависимость поляризации поля (ориентации вектора Е) от направления в дальней зоне А. Различают линейную и эллиптическую (в частности, круговую) поляризации. Угл. зависимость фазы поля А.— фазовая диаграмма, в отличие от амплитудной зависит от расположения начала координат на А. Если можно найти такое положение

26



начала координат, относительно к-рого фаза постоянна (не зависит от угла) или скачком меняется на ± при переходе от одного лепестка диаграммы к другому, то такое начало координат наз. фазовым центром А. Обладающую фазовым центром А. можно считать источником сферич. волн. В большинстве случаев А. не имеют фазового центра. Поэтому часто вводят условный фазовый центр — центр кривизны поверхности (или линии) равных фаз в гл. направлении.

Параметрами А. также явл.: коэфф. направленного действия Д, коэфф. усиления G=Д ( — кпд А.), коэфф. рассеяния  (доля мощности, излучаемой вне гл. лепестка диаграмм направленности), а также диапазонность (полоса частот). Коэфф. направленного действия Д характеризует выигрыш по мощности в данном направлении (обычно в направлении максимума) вследствие направленности А. Он равен отношению мощности, излучаемой в ед. телесного угла (, ) в направлении максимума (Дмакс) диаграммы направленности, к ср. мощности, излучаемой А. по всем направлениям. Для апертурных А. Дмаксk•4/0,50,5, где k~0,6-0,7 — коэфф. использования А., учитывающий, что часть мощности () уходит в боковые лепестки, а апертура А. облучается неравномерно.

Хар-ки А. зависят от частоты. Диапазон частот , в к-ром хар-ки А. можно считать неизменёнными, наз. её полосой частот. У нек-рых А. параметры незначительно меняются в широком диапазоне частот. Напр., ромбическая антенна и логопериодич. А. весьма широкополосны.

Приёмные антенны характеризуются теми же параметрами, что и передающие. Взаимности принцип связывает хар-ки передающих и приёмных А. Одно из следствий теоремы взаимности — совпадение диаграмм направленности А. при её работе в режимах передачи и приёма. Для приёмных А. диаграмма направленности — зависимость напряжения, тока или мощности на клеммах А. от угла прихода (, ) на А. плоской волны. Приёмную А. характеризуют дополнит. параметры: эфф. площадь эфф (для линейных А.— действующая длина или высота), шумовая темп-pa Та, помехозащищённость. Бели бы вся мощность, попадающая на раскрыв А., поглощалась ею, то эфф. поверхность А.эфф равнялась бы геом. площади геом её раскрыва. Поскольку, однако, часть мощности рассеивается, а часть теряется (джоулевы потери), то эфф<геом. Теорема взаимности устанавливает однозначную связь между эфф

На приёмную А. всегда, кроме «полезного» сигнала, 'воздействуют шумы. Шумовая температура приёмной А. Тa вводится соотношением: (k/2)Ta =Рвх, где  — полоса частот приёмника, Рвх — мощность на входе приёмника. Величина Та обусловлена как собств. шумами самой А.: Tша=(l-00 — темп-pa материала А.), так и внеш. радиоизлучением Земли Tза, атмосферы Tатма и косм. пр-ва TкосмаT3а= (0,6-0,8)T0, где Т0темп-pa почвы,  — доля мощности, излучаемой в направлении на Землю. При 0,2 и T0=300 К величина Tза~(30—40)К. Для миллиметровых волн ТатмаТ0, а в сантиметровом и метровом диапазонах Та™ меняется в безоблачную погоду от единиц до десятков К при направлении соотв. в зенит и на горизонт; во время облачности и осадков Га™ существенно увеличивается. Темп-pa Tакосм, связанная с распределением косм. радиоизлучения, растёт от 1 — 2К на сантиметровых волнах до десятков тысяч К на метровых и декаметровых волнах. Существенно повышается Tкосма при попадании в диаграмму направленности А. радиоизлучения Солнца и мощности дискретных косм. источников.

Существенной для высокочувствительных приёмных А. явл. помехозащищённость, достигаемая как за счёт снижения общего уровня боковых лепестков, так и за счёт создания т. н.

Рис. 13а. Антенна типа «волновой канал».

Рис. 136. Логопериодическая антенна.


адаптивных А., параметры к-рых автоматически изменяются в зависимости от условий работы и «помеховой» обстановки.

Типы антенн. Огромный диапазон длин волн, излучаемых или принимаемых А. (от десятков км до долей мм). и многообразие областей использования А. (связь, радиолокация, радиоастрономия, геология, медицина и др.) обусловили большое число типов и конструкций А. На длинных, средних и коротких волнах используются в осн. проволочные и вибраторные А. и их совокупности, в частности фазированные антенные решётки (рис. 10) и «антенные поля», А. типа волновой канал (рис. 13а),

логопериодич. А. (рис. 13б), ромбич. А. и т. п. Плоская синфазная фазированная антенная решётка относится к поперечным А., излучающим в направлении, перпендикулярном плоскости расположения вибраторов. В этом направлении волны, излучаемые вибраторами, питаемыми токами с одинаковыми амплитудами и фазами, складываются синфазно, и туда излучается макс. энергия. Если разность фаз токов в соседних вибраторах постепенно увеличивать вдоль к.-л. направления в плоскости решётки (что эквивалентно созданию бегущей волны тока), то направление максимума диаграммы направленности будет поворачиваться. Этим пользуются для т. н. качания (сканирования) антенного луча в пр-ве. Другая разновидность вибраторных А.— продольные (линейные) А., максимально излучающие в плоскости расположения вибраторов (ромбич. А., логопериодич. А., А. типа волновой канал).

В ДВ и СВ А. обе ф-ции А.— создание поля излучения и формирование диаграммы направленности, выполняют одни и те же элементы — вибраторы. В А. СВЧ диапазона поле излучения по-прежнему создают вибраторы, но диаграмма направленности формируется в результате суперпозиции не только непосредственно полей вибраторов, но и полей, рассеянных на разл. структурах — зеркале, линзе, щели, отверстии рупора и т. д. В А. СВЧ диапазона можно выделить (условно) ряд типов: рупорные А., линзовые А., щелевые А., диэлектрич. А., зеркальные А., А. поверхностных волн, фазированные антенные решётки, А. с искусств. апертурой, интерферометры, системы апертурного синтеза. Каждый из этих типов содержит множество разновидностей.

Весьма существенна форма диаграммы направленности. Напр., в кач-ве бортовых А. летат. аппаратов используются слабонаправленные А. с широкой диаграммой. В А. радиолокац. систем, предназначенных для обзора пр-ва и вращающихся (вокруг вертик. оси), диаграмма узкая в горизонт. плоскости и широкая в вертикальной, либо состоящая из множества узких лучей, сканирующих в пр-ве. Радиоастр. А. и А. косм. связи должны обладать чрезвычайно высокой направленностью для точного определения координат объекта, что требует увеличения отношения D/, и, следовательно, при данной К увеличения размеров А. Однако беспредельное наращивание размеров А. бесполезно, т. к. формирование узкой диаграммы и реализация большой эфф. площади приёма предъявляют жёсткие требования к точности изготовления и сохранения во времени поверхности А. Дисперсия А отклонений поверхности от заданной должна быть на порядок

27



Рис. 14а. Радиотелескоп с антенной переменного профиля РАТАН-600.

Рис. 14б. Антенна 100-м радиотелескопа в Бонне (ФРГ).


меньше X. Напр., А. 100 м полноповоротного радиотелескопа в Бонне (рис. 14б) для эфф. работы на волне =3 см (/D310-4) имеет погрешность изготовления и сохранения поверхности зеркала /D10-5 в условиях ветровых, тепловых и весовых деформаций. Для обеспечения этого используют т. н. гомологич. принцип конструирования, когда при движении зеркала с помощью управляемого ЭВМ перераспределения нагрузок сохраняется заданная форма поверхности, но со смещённым фокусом, в к-рый автоматически перемещается облучатель. Другими наиб. радикальными способами повышения разрешающей способности приёмной А. явл. расчленение А. на отд. регулируемые элементы. Это имеет место в А. перем. профиля (см. Радиотелескоп, рис. 14а), перископич. А. (см. Зеркальные антенны), в фазиров. антенных решётках и при разнесении А., используемых в кач-ве элементов интерферометрич. систем и систем апертурного синтеза (см. ниже).

К особому классу относятся т. н. малошумящие А., примером к-рых может служить рупорно-параболич. А. (рис. 15). Расположенный в фокусе излучатель-рупор облучает часть параболоида, и энергия излучается в пр-во через апертуру, ограниченную металлич. зеркалом и конусом, так что энергия облучателя попадает только на зеркало. Уровень боковых и задних лепестков диаграммы направленности такой А. весьма мал, а шумовая темп-pa порядка неск. К.

Характерная особенность совр. антенной техники — использование А. с обработкой сигнала (цифровой, аналоговой, пространственно-временной, методами когерентной и некогерентной оптики и т. д.). Если излучение принимается А., в к-рой токи от отд. излучателей или участков суммируются в одном тракте, то обработка такого суммарного сигнала связана с потерей информации. В то же время в фазированных антенных решётках можно обрабатывать отдельно каждый принятый элементами или их совокупностью сигнал и затем подвергать получ. сигналы дополнит. обработке.

А. с обработкой сигнала являются радиоастр. системы апертурного синтеза. Принцип апертурного синтеза заключается в использовании ряда А., последовательно во времени или стационарно занимающих определ. положения. Их сигналы суммируются и перемножаются с разл. взаимными фазовыми соотношениями. В результате соответствующей обработки на ЭВМ получается информация, эквивалентная такой, как при использовании сплошной апертуры, значительно превосходящей апертуры отдельных А. При машинной обработке можно осуществлять сканирование луча в пределах достаточно широкого лепестка от-

дельной А. и др. преобразования диаграммы.

Наиболее крупная система апертурного синтеза, расположенная в Шарлотсвилле (США), состоит из 27 подвижных полноповоротных 25-м параболич. А., перемещаемых по рельсовым путям на расстоянии до 21 км

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):